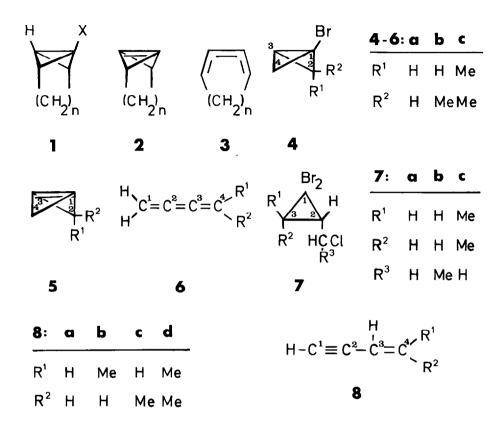
1-BROMOBICYCLO[1.1.0]BUTANES AND STRONG BASES: PRODUCTS AND MECHANISM ⁺

Axel Düker and Günter Szeimies

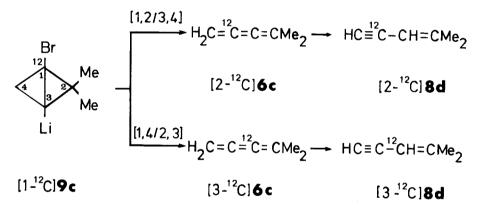

Institut für Organische Chemie der Universität München Karlstraße 23, D-8000 München 2, Germany

<u>Summary</u>: Treatment of the bromobicyclo[1.1.0] butanes 4a = c with LDA led to the formation of the 1,2,3-butatrienes 6 which were isomerized by excess base to the alkynes 8. Reaction of $[1-^{12}C]4c$ with LDA afforded $[3-^{12}C]8d$, indicating that bicyclo[1.1.0] but-1(3)-ene 5 was not an intermediate.

1-Halobicyclo[1.1.0]butanes of type $\underline{1}$ with a bridge between C-2 and C-4 eliminate hydrogen halide when treated with a strong base, affording the bicyclo[1.1.0]but-1(3)-ene derivatives $\underline{2}$ as short-lived intermediates. At low temperature (< 0°C), $\underline{2}$ could be trapped by nucleophiles (thiolates, amides, organolithium compounds) or by reactive 1,3-dienes ¹⁾. Above 20°C, tricyclo-[4.1.0.0^{2,7}]hept-1(7)-ene ($\underline{2}$, n = 3) has been shown to isomerize to 1,2,3-cycloheptatriene ($\underline{3}$, n = 3) ²⁾ in a formally orbital symmetry "forbidden" process ³⁾. 1-Halobicyclo[1.1.0]butanes $\underline{4}$ without the bridge between C-2 and C-4 might behave differently when exposed to a strong base. Although the formation of $\underline{5}$ seems reasonable, the rearrangement of $\underline{5}$ to $\underline{6}$ is not hampered by orbital symmetry restrictions. Therefore, $\underline{5}$ could evade all trapping efforts by a fast isomerization to $\underline{6}$.

To test this point experimentally, the 1-bromobicyclo[1.1.0]butanes $4\underline{a} - \underline{c}$ were synthesized by the elegant method of <u>Skattebøl</u> and <u>Baird</u>⁴⁾ from the dibromocyclopropanes $\underline{7}\underline{a} - \underline{c}$ and methyllithium. The NMR data of $4\underline{a} - \underline{c}$ are collected in Table 1. When the bromides $4\underline{a} - \underline{c}$ were mixed with 3-5 equiv. of lithium diisopropylamide (LDA) in ether at -20°C, aqueous workup after 2-5 hours afforded in yields of 30-50% <u>8a</u>, a 1:6 mixture of <u>8b</u> and <u>c</u>, and, respectively, <u>8d</u>. The structures of <u>8a</u>-<u>d</u> are based on their ¹H and ¹³C NMR spectra, which had been recorded previously ⁵. It was easy to

3555


demonstrate that the alkynes $\underline{8}$ were formed by isomerization of the butatrienes $\underline{6}$, caused by the excess of LDA. After dropwise addition of one equiv. of a solution of LDA to a solution of $\underline{4a}$ or of $\underline{4c}$ in ether at -20°C, the ¹H NMR spectra of the solutions showed intense signals of $\underline{6a}^{(6)}$ or of $\underline{6c}^{(7)}$, which disappeared quickly, when base addition was continued.

To find out, if the assumed intermediates $\frac{5}{29}$ and c could be trapped, mixtures of $\frac{49}{29}$ or $\frac{4}{2}c$ and lithium thiophenolate or 2,5-dimethylfuran were treated with an excess of LDA at -20°C. However, no products containing the bicyclo[1.1.0]butane structure were isolated, leaving the question on the intermediacy of $\frac{5}{2}$ unanswered.

To reach a decision on this point, $[1-{}^{12}C]_{4\underline{c}}$ was synthesized from $[1-{}^{12}C]_{\underline{7}\underline{c}}$. For this purpose, commercially available ${}^{12}CDCl_3$ (${}^{12}C$ content $\ge 99.95\%$) was converted to ${}^{12}CDBr_3$ by anhydrous AlBr₃ in 71% yield 8 . Reaction of ${}^{12}CDBr_3$ with 1-chloro-3-methylbut-2-ene in CH₂Cl₂ with conc.

NaOH under phase-transfer conditions furnished a 72% yield of $[1-^{12}C] \underline{7}\underline{c}$, from which $[1-^{12}C] \underline{4}\underline{c}$ was obtained in 34% yield by reaction with methyllithium in ether. The ¹³C NMR spectrum of $[1-^{12}C] \underline{4}\underline{c}$ indicated that the ¹³C proportion of C¹ was below ¹³C NMR detection: the sing let of the ¹³C NMR spectrum of $\underline{4}\underline{c}$ at δ 28.9 was not observed in the spectrum of $[1-^{12}C] \underline{4}\underline{c}$.

Mixing $[1-{}^{12}C]4\underline{c}$ with 4 equiv. of LDA at -20°C followed by aqueous workup produced a sample of the alkyne $\underline{8}\underline{d}$, the ${}^{13}C$ NMR spectrum of which gave a clear answer to the posed question: the signal of the olefinic C³ (at δ 105.4 in the ${}^{13}C$ NMR spectrum of $\underline{8}\underline{d}$) was completely absent in the spectrum of the sample, showing that $[3-{}^{12}C]\underline{8}\underline{d}$ was the only product. This result immediately eliminated $\underline{5}\underline{c}$ as an intermediate. In this molecule, the bicyclo[1.1.0]butane side-bonds C¹-C² and C²-C³ are equivalent, as are the bonds C¹-C⁴ and C³-C⁴. Neglecting kinetic isotope effects, cleavage of opposite side bonds (C¹-C²/C³-C⁴ and, respectively, C²-C³/C¹-C⁴) should occur with equal probability, leading to a 1:1 mixture of $[2-{}^{12}C]\underline{6}\underline{c}$ and $[3-{}^{12}C]\underline{6}\underline{c}$, and, after base-induced isomerization, finally to a 1:1 mixture of $[2-{}^{12}C]\underline{8}\underline{d}$ and $[3-{}^{12}C]\underline{8}\underline{d}$.

As $5\underline{c}$ is not an intermediate in the hydrogen bromide elimination of $4\underline{c}$, and as $4\underline{c}$, in the absence of electrophilic catalysts, is stable at the reaction temperature, a possible candidate for rearrangement seems to be the lithiated species $\underline{9}\underline{c}$. Lithium bromide elimination from $\underline{9}\underline{c}$ is then accompanied by cleavage of the bonds C²-C³ and C¹-C⁴ in a concerted, but not necessarily in a synchronous fashion ⁹). The high regioselectivity of bond breaking of the bicyclo[1.1.0]-butane framework of $\underline{9}\underline{c}$ is, however, not fully understood. The mechanistic alternative of single electron transfer (SET) from LDA to $\underline{4}\underline{c}$ followed by ring opening of the radical anion of $\underline{4}\underline{c}$ appears to be less attractive, because no evidence of SET was obtained in previous investigations, when halides of type 1 were treated with LDA ¹.

<u>4a</u>	¹ H NMR (CCI ₄) δ 1.10 (broadened s, 2 H), 1.80 (tt, J = 3 Hz and J = 1 Hz, 1 H), 1.99 (d, J = 3 Hz, each line broadened by small coupling, 2 H); ¹³ C NMR (CDCI ₃) δ 6.6 (d), 15.1 (s), 38.7
	3 Hz, each line broadened by small coupling, 2 H); ¹³ C NMR (CDCl ₃) δ 6.6 (d), 15.1 (s), 38.7
	(t).
4₽	¹ H NMR (CCl ₄) δ 1.05 (broadened s, 1 H), 1.15 (m, 4 H), 1.58 (d, J = 3 Hz, each line broaden-
	ed by small coupling, 1 H), 1.93 (d, J = 3 Hz, each line broadened by small coupling, 1 H);
	13 C NMR (C ₆ D ₆) & 12.3 (d), 14.0 (q), 23.9 (s), 36.2 (t), 43.8 (d). 1 H NMR see Lit. 4 ; 13 C NMR (C ₆ D ₆) & 14.0 (q), 17.9 (d), 23.0 (q), 28.9 (s), 37.3 (t), 51.8
<u>4</u> ⊆	¹ H NMR see Lit. ⁴ ; ¹³ C NMR ($C_{6}D_{6}$) δ 14.0 (q), 17.9 (d), 23.0 (q), 28.9 (s), 37.3 (t), 51.8
	(s).
6g	¹ H NMR see Lit. $\frac{7}{3}$; $\frac{13}{5}$ NMR (CDCl ₃) δ 24.5 (q), 85.4 (t), 117.8 (s), 156.5 (s), 166.2 (s).
<u>8</u> d	¹ H NMR see Lit. ⁷⁾ ; ¹³ C NMR (CDCl ₃) δ 24.5 (q), 85.4 (t), 117.8 (s), 156.5 (s), 166.2 (s). ¹ H NMR see Lit. ^{5e)} ; ¹³ C NMR (C ₆ D ₆) δ 20.8 (q), 24.5 (q), 80.0 (d), 81.9 (s), 105.4 (d),
	149.6 (s).

This work was supported by the <u>Deutsche Forschungsgemeinschaft</u> and by the <u>Fonds der Chemi</u>schen Industrie.

References and Notes

- + Dedicated to Professor Rolf Huisgen on his 65th birthday.
- a. J. Harnisch, H. Legner, U. Szeimies-Seebach, and G. Szeimies, <u>Tetrahedron Lett. 1978</u>, 3683. b. H.-G. Zoch, E. Kinzel and G. Szeimies, <u>Chem. Ber</u>. <u>114</u>, 968 (1981). c. G. Szeimies, J. Harnisch and O. Baumgärtel, <u>J. Am. Chem. Soc</u>. <u>99</u>, 5183 (1977). d. R. Römer, J. Harnisch, A. Röder, A. Schöffer, G. Szeimies, G. Germain, and J. M. Arrieta, <u>Chem. Ber</u>. <u>117</u>, 925 (1984). e. U. Szeimies-Seebach, A. Schöffer, R. Römer, and G. Szeimies, <u>Chem. Ber</u>. <u>114</u>, 1767 (1981). f. H.-G. Zoch, A.-D. Schlüter and G. Szeimies, <u>Tetrahedron Lett</u>. <u>1981</u>, 3835.
- H.-G. Zoch, G. Szeimies, R. Römer, G. Germain, and J.-P. Declercq, <u>Chem. Ber</u>. <u>116</u>, 2285 (1983).
- R. B. Woodward and R. Hoffmann, <u>Angew. Chem. 81</u>, 797 (1969); <u>Angew. Chem., Int. Ed. Engl. 8</u>, 781 (1969).
- N. O. Nilsen, L. Skattebøl, M. S. Baird, S. R. Buxton, and P. Slowey, <u>Tetrahedron Lett</u>. <u>1984</u>, 2887.
- 5) ¹H NMR of <u>§a</u>: a. A. P. Ebdon and T. N. Huckerby, <u>J. Mol. Struct. <u>54</u>, 89 (1979). ¹³C NMR of <u>§a</u>: b. J. Kowalewski, M. Granberg, F. Karlsson and R. Vestin, <u>J. Magn. Res. <u>21</u>, 331 (1976). ¹H NMR of <u>§b</u> and <u>c</u>: c. L. Eisenhuth, H. Siegel and H. Hopf, <u>Chem. Ber. <u>114</u>, 3772 (1981). ¹³C NMR of <u>§b</u> and <u>c</u>: d. M. T. W. Hearn, <u>J. Magn. Res. <u>22</u>, 521 (1976). ¹H NMR of <u>§d</u>: e. M. Karpf and A. S. Dreiding, Helv. Chim. Acta <u>60</u>, 3045 (1977).</u></u></u></u>
- R. W. Kunz, V. Bilinski, W. von Philipsborn and A. S. Dreiding, <u>Org. Magn. Res</u>. <u>22</u>, 349 (1984).
- 7) T. L. Jacobs and P. Prempree, J. Am. Chem. Soc. 89, 6177 (1967).
- 8) I. F. Harlow and O. C. Ross, Chem. Zentralbl. 1933 I, 1682.
- 9) M. J. S. Dewar, J. Am. Chem. Soc. 106, 209 (1984).

(Received in Germany 18 April 1985)