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Summary: Treatment of the bromobicyclo[l.l.O]butanes 4a - c with LDA led to the formation of 

the 1,2,3-butatrienes 6 which were isomerized by excess base to the alkynes 2. Reaction of 

~I-"C]ZE with LDA afforded [3-f2C1S~, indicating that bicyclo[l.f.O]but-l(3)-ene 5 was not 

an intermediate. 

I-Halobicyclo[l.l.Olbutanes of type 1 with a bridge between C-Z and C-4 eliminate hydrogen 

halide when treated with a strong base, affording the bicyclo['.l.Cl]but-l(3)-ene derivatives 2 

as short-lived intermediates. At low temperature (< O'C), 2 could be trapped by nucleophiles 

(thiolates, amides, organolithium compounds) or by reactive 1,3-dienes '). Above 2O"C, tricyclo- 

[4.1.0.02'7]hept-l(7)-ene (2, n = 3) has been shown to isomerize to 1,2,3-cycloheptatriene (3 _' 

n = 3) 2)' in a formally orbital symmetry "forbidden" process 3) . I-Halobicyclo[l.l.O]butanes 4 

without the bridge between C-2 and C-4 might behave differently when exposed to a strong base. 

Although the formation of 2 seems reasonable, the rearrangement of 5 to $ is not hampered by 

orbital symmetry restrictions. Therefore, 2 could evade all trapping efforts by a fast isomeri- 

zation to 5. 

To test this point experimentally, the I-bromobicyclo[l.'.O]butanes 22-5 were synthesized by 

the elegant method of Skattebdl and Baird 4, from the dibromocyclopropanes ii-5 and methyllithium. 

The NMR data of 42-5 are collected in Table 1. When the bromides tl-c were mixed with 3-5 equiv. 

of lithium diisopropylamide (LDA) in ether at -2O"C, aqueous workup after 2-5 hours afforded in 

yields of 30-50% 83, a I:6 mixture of c$ and 5, and, respectively, @J. The structures of !s-c=l -_ 

are based on their 'H and 
13 
C NMR spectra, which had been recorded previously 5) . It was easy to 
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demonstrate that the alkynes 8 were formed by isomerization of the butatrienes 

excess of LDA. After dropwise addition of one equiv. of a solution of LDA to a 
1 

or of 4c_ in ether at -2O"C, the 'H NMR spectra of the solutions showed intense 

or of 6; '), which disappeared quickly, when base addition was continued. 

$, caused by the 

solution of 42 

signals of @ 6) 

To find out, if the assumed intermediates 2s and 5 could be trapped, mixtures of 9; or f$ 

and lithium thiophenolate or 2,5-dimethylfuran were treated with an excess of LDA at -20°C. How- 

ever, no products containing the bicyclo[l.l.O]butane structure were isolated, leaving the ques- 

tion on the intermediacy of 5 unanswered. 

To reach a decision on this point, [l-'*C]‘lg was synthesized from [l-12C]~$. For this pur- 

pose, commercially available I2 CDC13 (12C content t 99.95%) was converted to 
12 
CDBr3 by anhydrous 

AlBr3 in 71% yield 8) . Reaction of I2 CDBr3 with I-chloro-3-methylbut-2-ene in CH2C12 with cont. 
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Table 1. NMR data of il-5, $5 and &I 

- 

$g 'H NMR (CC14) 6 1.10 (broadened s, 2 H), 1.80 (tt, J = 3 Hz and J = 1 Hz, 1 H), 1.99 (d, 3 = 

3 Hz, each line broadened by small coupling, 2 H); 13C NMR (CDC13) 6 6.6 (d), 15.1 (s), 38.7 

(t). 

$i ' H NMR (CC14) 6 1.05 (broadened s, 1 H), 1.15 (m, 4 H), 1.58 (d, J = 3 Hz, each line broaden- 

ed by small coupling, 1 H), 1.93 (d, J = 3 Hz, each line broadened by small coupling, 1 H); 

13C NMR (C6D6) 6 12.3 (d), 14.0 (q), 23.9 (s), 36.2 (t), 43.8 (d). 

$$ ’ H NMR see Lit. 4); 13C NMR (C6D6) 6 14.0 (q), 17.9 (d), 23.0 (q), 28.9 (s), 37.3 (t), 51.8 

!s$ y. H NMR see Lit. 7); 13C NMR (CDC13) 6 24.5 (q), 85.4 (t), 117.8 (s), 156.5 (s), 166.2 (s). 

gi 'H NMR see Lit. 5e); '3 C NMR (C6D6) 6 20.8 (q), 24.5 (q), 80.0 (d), 81.9 (s), 105.4 (d), 

149.6 (s). 

This work was supported by the Deutsche Forschungsgemeinschaft and by the Fonds der Chemi- 

schen Industrie. 
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